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Abstract. We investigate Poincaré-covariant phase spaces which admit space-time localization
and cases when this localization can be chosen commutative.

0. Introduction

The notion of a localization (a covariant position) introduces the space-time context into
abstract Poincaré-covariant phase spaces.

Coadjoint orbits of the Poincaré group—‘minimal’ Poincaŕe-covariant phase spaces—
were recognized as spaces of motions of classical elementary relativistic particles some time
ago [1]. They do not admit any localization (cf section 1). Recently, extended phase spaces
for such particles were introduced [2] as ‘minimal’ Poincaré-covariant phase spaces with
commutative (see below) localization.

In [3, 4] (see also [5]) it was pointed out that in the product of two-twistor phase
spaces, there is naturally defined localization (one has to exclude parallel momenta). It is
non-commutative: the Poisson bracket of two space-time coordinates is proportional to the
(internal) spin tensor. In [5] it was shown that in the two-twistor phase space commutative
localization can also be found (hence this space ‘decomposes’ on some extended phase
spaces).

The twistor phase space provides an elegant description of (all ‘physical’ [1]) massless
Poincaŕe-coadjoint orbits. The question now arises about the existence of a (commutative)
localization for the product of two arbitrary (‘physical’) coadjoint orbits. By a simple
geometric construction, one shows that such a localization indeed exists (after exclusion
of parallel momenta). In this paper we describe this construction in detail for the case
of spinless orbits and we show that one can find a commutative localization if one of the
particles is massless.

Throughout this paper,M denotes the Minkowski space-time,G denotes the (connected
component of unity of the) Poincaré group andg—its Lie algebra.

We denote byV the subgroup of translations in the Poincaré groupG. This is a normal
subgroup and

L := G/V
is the Lorentz group, acting naturally inV—the tangent space ofM. Any choice ofx ∈M
allows us to identifyL with the stabilizing subgroupGx of G. We denote byl andgx the
Lie algebras corresponding toL andGx .
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A choice of a basisek in V allows us to identify the generators ofl as

Mkl := ek ⊗ g(el)− el ⊗ g(ek) ∈ l ⊂ EndV

whereg denotes the metric tensor (here considered as a mapg(·) : V → V ∗). Choosing
x0 ∈M we can identifyg as the semidirect productg ' V o l, with (the ‘right’—see [2])
commutators given by

[Mjk,Mln] = gjlMkn + gknMjl − gjnMkl − gklMjn [Mjk, el ] = gjlek − gklej
and [ej , ek] = 0. We recall that the same formulae define the Poisson brackets ong∗:

{Mjk,Mln} = gjlMkn + gknMjl − gjnMkl − gklMjn {Mjk, pl} = gjlpk − gklpj (1)

and{pj , pk} = 0 (we have changed the notation forek using the traditional notationpk for
the linear momentum).

1. Relativistic systems and localization

Isolated relativistic system(IRS) is a symplectic manifoldP together with a symplectic
action ofG on it. (We identify an IRS with the underlying symplectic manifoldP , if the
action ofG is assumed to be known.) Due to the known properties ofG ([g, g] = g,
H 1(g, g∗) = {0}, (g∗)inv = {0}), there is exactly one equivariant momentum mapping
J : P → g∗ for this action, hence each IRS is a HamiltonianG-space (in a unique way).
(Recall thatJ is equivariant if and only if its components(pj ,Mkl) satisfy (1).)

Examples of IRS.
(1) Coadjoint orbits ofG (Souriau’s spaces of motions of elementary systems).
(2) Extended phase spacesPz of elementary systems (see [2] and below).
(3) Twistor phase spaceT (see [6, 4, 5]).
(4) Products of IRSs.

Let P be an IRS. Alocalization of P is aG-equivariant mapx : P →M. An IRS is
localizable (it is a LIRS) if it admits a localization.

Using a basisek in V and choosing an originx0 ∈M, a localizationx is equivalently
described by four functionsxj (j = 0, . . . ,3) such that

{pj , xk} = δj k {Mjk, x
l} = δj lxk − δklxj . (2)

Examples of IRS not admitting any localization.
(1) Coadjoint orbit ofG.

Proof. The existence ofxk satisfying (2) yieldspk = 1
2{p2, xk} = 0 (sincep2 := gjkpjpk

is constant on the orbit) and implies the contradictionδkj = {pk, xj } = 0. �

(2) Any IRS on whichm2 := p2 is fixed (proof as above).
(3) Twistor spaceT (the mass is fixedm = 0).

Examples of IRS admitting a localization.
(1) Extended phase spaces (EPS) [2]; we recall the definition at the end of this section.
(2) Fixed spin reduction of EPS, cf [2].
(3) Product of a LIRS by an IRS.
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(4) Product of two ‘physical’ coadjoint orbits (excluding parallel momenta), cf section 2
below.

(5) Two-twistor space (excluding parallel momenta) [7, 4, 5].

A localization iscommutativeif {xj , xk} = 0, i.e. if x : P → M is a Poisson map
(whereM has the trivial Poisson structure).

A commutative localization iscompleteif x is a complete Poisson map, i.e. Hamiltonian
vector fields of functionsxj are complete.

In [2] it was proven that in the case of a commutative localizationx, the (Lorentz)
momentum with respect tox,

�jk = Mjk − pjxk + pkxj
commutes withx and p. More generally, assuming nothing about the commutation
properties ofx, we have

{�jk, pl} = 0 {�jk, xl} = {xj , xl}pk − {xk, xl}pj . (3)

One can easily show that{xj , xk} = 0 is equivalent to{�jk, xl} = 0.
An extended phase space(EPS) is an IRS with complete commutative localization, such

that the groupG together with the Hamiltonian vector fields ofxj acts transitively onP .
Such spaces were introduced in [2] in order to formulate the (free) dynamics of elementary
systems. It was shown in [2] (using (3)) that extended phase spaces are all of the form

P = T ∗M×O
whereO is a coadjoint orbit inl∗. HenceP = T ∗M or

P = Pz = T ∗M×Oz
wherez = a + ib is the parameter of the orbit:

Oz := {� ∈ l \ {0} : 〈�,�〉C = z2}
(we have identifiedg∗ with g using the Killing form〈�,�〉 := − 1

2 tr�2 and denoted by
〈·, ·〉C the corresponding complex Killing form onl ≡ sl(2,C)).

2. Products of two spinless orbits

Such orbits are symplectic reductions ofT ∗M with respect to a fixed mass. Instead of
showing that any product of two such orbits (excluding parallel momenta) has a localization,
we shall show that there exists a localization ofP := T ∗M × T ∗M (parallel momenta
excluded) which depends only on the reduced variables. The construction of a map
x : P →M is fairly simple. Given(x1, p1, x2, p2), wherex1, x2 ∈M, p1, p2 ∈ V ∗ ∼= V ,
consider the corresponding two world lines,

X1(t) = x1+ tp1 X2(s) = x2+ sp2

where we relate the parameters to t in such a way thatX1(t)− X2(s) is perpendicular to
the total momentump := p1+ p2. This means thats = c + dt where

c = (x1− x2) · p
p2 · p d = p1 · p

p2 · p
(the dot denotes the scalar product). It is easy to see that there exists exactly onet such
that the distance fromX1(t) to X2(s(t)) is minimal, namely:

t = t0 = −y · q
q · q y = [(x1− x2) ∧g p2]p q := (p1 ∧g p2)p (4)
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where byu ∧g v we denote (cf [2]) the element ofl ⊂ EndV which mapsw ∈ V to

(u ∧g v)w := u(v · w)− v(u · w).
In other words, two (not parallel) free motions determine uniquely a pair of points on the
corresponding world lines, which realizes the shortest distance (in the co-moving frame)
between the two lines. Any fixed affine combination of these two points,

(1− λ)X1(t0)+ λX2(s(t0)) (5)

(λ is a fixed number), gives a localization. A simple example is given by the first point
(λ = 0):

x := X1(t0) = x1+ t0p1 (6)

wheret0 is given by (4).

Proposition 2.1.The localization given by (6) is commutative if and only ifm2
2 := p2

2 = 0
(the second particle is massless).

Proof. We have

{x1+ t0p1
⊗,x1+ t0p1} = {x1, t0} ∧ p1+ t0{p1, t0} ∧ p1 (7)

(tensor notation). Since{p1, y · q} = (q ∧ p)p2, it is easy to see that

{p1, t0} ∧ p1 = −p
2

q2
(p1 · p2)p1 ∧ p2. (8)

Now, for the commutativity{x⊗,x} = 0, the component of{x1, t0} which is proportional to
1x := x1 − x2 must vanish. This component comes only from{x1, y · q}. The coefficient
at1x in the latter expression is given by

p2 · q − (p2 · p)2 = −p2p2
2

hencep2
2 = 0.

Assuming now thatp2
2 = 0, we have

t0 = −1x · p2

p1 · p2
(9)

and one can easily calculate the brackets

{p1, t0} = − 1

p1 · p2
p2 {x1, t0} = −1x · p2

p1 · p2
p2 = t0p2. (10)

Substituting this into (7) gives immediately the result. �

Note that the Lorentz momentum with respect tox is given by

� = p1 ∧ x1+ p2 ∧ x2− (p1+ p2) ∧ x = p2 ∧ (x2− x). (11)

For p2
2 = 0, it follows that� is simple and1

2 tr�2 = 0, hence we obtain the nilpotent
Lorentz orbit (a = b = 0 in [2]). This shows that the product of any (spinless) orbit by the
massless one is in fact (contained in) the extended phase spaceP0 = T ∗M × T ∗S2. The
‘celestial sphere’ is here provided by the projective part ofp2. A direct calculation shows
that

{p2
⊗,x} = 1

p1 · p2
p2⊗ p1 (12)

which ensures the commutativity ofx with the projective part ofp2.
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Remark.It would be interesting to find a commutative localization for the case when both
particles are massive. Let us also note that among all possible localizations (5) there is a
distinguished one—that lies on the world line of the total system:

X := X(t0) = (p1p)X1(t0)+ (p2p)X2(s(t0))

p2
(13)

(one can easily show that the world line of the total system is the following ‘affine
combination’ of the world lines of the components:X(t) = (p1p)X1(t)+(p2p)X2(s(t))

p2 ). It is
characterized by the condition that the Lorentz momentum with respect toX applied top
gives zero.

Using (11) we can calculate the spin function onP . Since
1
2 tr�2 = −p2

2 · (x2− x)2 �p = p2[(x2− x) · p)] − (x2− x)(p2 · p) (14)

and

(�p)2 = p2
2[(x2− x) · p)]2+ (x2− x)2(p2 · p)2 (15)

we have

s2 = − (�p)
2

p2
− 1

2
tr�2 = (x2− x)2 [p2

2p
2− (p2 · p)2]

p2
− p2

2
[(x2− x) · p]2

p2
. (16)

In particular, ifp2
2 = 0, we have

s2 = −(x2− x)2 (p2 · p)2
p2

= −p2

[
(p2 · p)(X2(s(t0))− x)

p2

]2

(17)

and sincex −X = (p2·p)(x−X2(s(t0))

p2 ,

s2 = m2r2 (18)

wherer2 = −(x −X)2.

3. Two-twistor phase space

Two twistors with non-parallel momenta determine a two-dimensional subspace in the
twistor space (transversal to the distinguished ‘spinor’ subspace), hence a point in the
complexified Minkowski space. Due to the possibility of taking the ‘real part’ of points
in the complexified Minkowski space (we explain this construction in the appendix), one
obtains a localization in the two-twistor phase space [3–5]. It is not commutative, namely
the Poisson brackets of space-time coordinates is given by

{Xj,Xk} = − 1

m2
Rjk (19)

wherem2 = p2, p is the total linear momentum andRjk is the rotational (with respect top)
part of the total Lorentz angular momentum. This remarkable formula coincides with that
one for the spin-invariant localization, considered in [2] (the localization which descends to
the fixed spin reduced space). A reasonable conjecture about the localization given by (13)
is that it has the same property.

In [5] it was shown that in the two-twistor phase space there exists also a commutative
localization. It is obtained by considering the ‘world line’ of, say, the first twistor,
with respect to the common rest frame (so the result is similar to proposition 2.1). The
commutativity was proved using the basic twistor calculus. However, the (commutative as
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well as non-commutative) localization is in fact a function of the coadjoint orbit variables
(p1,M1), (p2,M2) as can be seen from formula (32) of [5]. This means that

(1) the localization facts concerning the two-twistor space can be proved using only
products of coadjoint orbits (of massless particles with spin);

(2) these facts are indeed valid for such orbits.

Appendix. The complexified Minkowski space

Let T be the twistor space (four-dimensional complex vector space equipped with a
Hermitian form of signature++−−) and let S denote the distinguished isotropic two-
dimensional (‘spinor’) subspace. The Minkowski spaceM is defined as the set of all
complex two-dimensional isotropic subspaces ofT which are transversal toS. The
complexified Minkowski spaceMC is identified as the set of all complex two-dimensional
subspaces ofT which are transversal toS. There is a one-to-one correspondence between
z ∈MC and projection operatorsP 2 = P acting inT whose image coincides withS, such
that

z = kerP.

It is easy to see that the natural (antiholomorphic) involution inMC given by z 7→ z⊥ is
implemented by the operation

P 7→ I − P ∗
on projections (here * denotes the Hermitian conjugation with respect to the given form).
Indeed,I − P ∗ is a projection with the required properties:

im(I − P ∗) = kerP ∗ = (imP)⊥ = S⊥ = S
ker(I − P ∗) = imP ∗ = (kerP)⊥.

Of course, pointsz ∈ MC which belong toM (are real) correspond to projectionsP
satisfying

P = I − P ∗. (20)

Now, for any projectionP (corresponding to somez ∈MC), we can define thereal part,

ReP := 1
2(P + I − P ∗).

It is a projection:(ReP)2 = ReP . Indeed, sinceP ∗P = 0, we have

(ReP)2 = 1
4[P 2+ (I − P ∗)2+ P(I − P ∗)+ (I − P ∗)P ]

= 1
4[P + (I − P ∗)+ (I − P ∗)+ P ].

The image of ReP is S. Moreover, ReP satisfies (20). It follows that ReP corresponds
to a point inM which we denote by Rez (the real part of z ∈MC). Geometrically, Rez
is the 2-dimensional subspace which is ‘half-way’ fromz to z⊥ (in the direction ofS).

The imaginary part,

ImP = 1

2i
(P − I + P ∗)

has the properties

(ImP)|S = 0 im(ImP) ⊂ S (ImP)∗ = − ImP

henceT 3 Z 7→ Z + (ImP)Z = Z + iv(π(Z)) is the action of a translation by a (real)
vectorv ∈ S⊗ S (cf [5]). Hereπ(Z) is the projection ofZ on T/S andv is the linear map
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from T/S to S, defined by1
i (ImP). We set Imz := v, if P is the projection corresponding

to z ∈ MC. Geometrically, Imz is the ‘difference’ (in the direction ofS) of z and z⊥

(scaled by the imaginary unit).
The above structure ofMC agrees with the obvious intuition that the complexification

of an affine space is modelled by its tangent bundle.
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